1,707 research outputs found

    Weak measurement and the traversal time problem

    Get PDF
    The theory of weak measurement, proposed by Aharonov and coworkers, has been applied by Steinberg to the long-discussed traversal time problem. The uncertainty and ambiguity that characterize this concept from the perspective of von Neumann measurement theory apparently vanish, and joint probabilities and conditional averages become meaningful concepts. We express the Larmor clock and some other well-known methods in the weak measurement formalism. We also propose a method to determine higher moments of the traversal time distribution in terms of the outcome of a gedanken experiment, by introducing an appropriate operator. Since the weak measurement approach can sometimes lead to unphysical results, for example average negative reflection times and higher moments, the interpretation of the results obtained remains an open problem.Comment: Talk given at the Adriatico Research Conference on ``Tunnelling and its implications'', 30 July--2 August 1996, ICTP, Triest

    NANOTCAD2D: Two-dimensional code for the simulation of nanoelectronic devices and structures

    Full text link
    In this paper we present NANOTCAD2D, a code for the simulation of the electrical properties of semiconductor-based nanoelectronic devices and structures in two-dimensional domains. Such code is based on the solution of the Poisson/Schr\"odinger equation with density functional theory and of the continuity equation of the ballistic current. NANOTCAD2D can be applied to structures fabricated on III-IV, strained-silicon and silicon-germanium heterostructures, CMOS structures, and can easily be extended to new materials. In particular, in the case of SiGe heterostructures, it computes the effects of strain on the energy band profiles. The effects of interface states at the air/semiconductor interfaces, particularly significant in the case of devices obtained by selective etching, are also properly taken into account.Comment: 23 pages, 11 figure

    On the possibility of tunable-gap bilayer graphene FET

    Full text link
    We explore the device potential of tunable-gap bilayer graphene FET exploiting the possibility of opening a bandgap in bilayer graphene by applying a vertical electric field via independent gate operation. We evaluate device behavior using atomistic simulations based on the self-consistent solution of the Poisson and Schroedinger equations within the NEGF formalism. We show that the concept works, but bandgap opening is not strong enough to suppress band-to-band tunneling in order to obtain a sufficiently large Ion/Ioff ratio for CMOS device operation.Comment: 10 pages, 3 figures, submitted to IEEE ED

    Simulation of Graphene Nanoribbon Field Effect Transistors

    Full text link
    We present an atomistic three-dimensional simulation of graphene nanoribbon field effect transistors (GNR-FETs), based on the self-consistent solution of the 3D Poisson and Schroedinger equation with open boundary conditions within the non-equilibrium Green's Function formalism and a tight-binding hamiltonian. With respect to carbon nanotube FETs, GNR-FETs exhibit comparable performance, reduced sensitivity on the variability of channel chirality, and similar leakage problems due to band-to-band tunneling. Acceptable transistor performance requires effective nanoribbon width of 1-2 nm, that could be obtained with periodic etching patterns or stress patterns

    A Three-dimensional simulation study of the performance of Carbon Nanotube Field Effect Transistors with doped reservoirs and realistic geometry

    Full text link
    In this work, we simulate the expected device performance and the scaling perspectives of Carbon nanotube Field Effect Transistors (CNT-FETs), with doped source and drain extensions. The simulations are based on the self-consistent solution of the 3D Poisson-Schroedinger equation with open boundary conditions, within the Non-Equilibrium Green's Function formalism, where arbitrary gate geometry and device architecture can be considered. The investigation of short channel effects for different gate configurations and geometry parameters shows that double gate devices offer quasi ideal subthreshold slope and DIBL without extremely thin gate dielectrics. Exploration of devices with parallel CNTs show that On currents per unit width can be significantly larger than the silicon counterpart, while high-frequency performance is very promising.Comment: Submitted to IEEE TE

    Shot noise in resonant tunneling structures

    Full text link
    We propose a quantum mechanical approach to noise in resonant tunneling structures, that can be applied in the whole range of transport regimes, from completely coherent to completely incoherent. In both limiting cases, well known results which have appeared in the literature are recovered. Shot noise reduction due to both Pauli exclusion and Coulomb repulsion, and their combined effect, are studied as a function of the rate of incoherent processes in the well (which are taken into account by means of a phenomenological relaxation time), and of temperature. Our approach allows the study of noise in a variety of operating conditions (i.e., equilibrium, sub-peak voltages, second resonance voltages), and as a function of temperature, explaining experimental results and predicting interesting new results.Comment: RevTeX file, 26 pages, 3 Postscript figures, uses epsf.sty. submitted to Phys. Rev.

    Study of Warm Electron Injection in Double Gate SONOS by Full Band Monte Carlo Simulation

    Full text link
    In this paper we investigate warm electron injection in a double gate SONOS memory by means of 2D full-band Monte Carlo simulations of the Boltzmann Transport Equation (BTE). Electrons are accelerated in the channel by a drain-to-source voltage VDS smaller than 3 V, so that programming occurs via electrons tunneling through a potential barrier whose height has been effectively reduced by the accumulated kinetic energy. Particle energy distribution at the semiconductor/oxide interface is studied for different bias conditions and different positions along the channel. The gate current is calculated with a continuum-based post-processing method as a function of the particle distribution obtained from Monte Carlo. Simulation results show that the gate current increases by several orders of magnitude with increasing drain bias and warm electron injection can be an interesting option for programming when short channel effects prohibit the application of larger drain bias

    Enhanced shot noise in resonant tunneling: theory and experiment

    Full text link
    We show that shot noise in a resonant tunneling diode biased in the negative differential resistance regions of the I-V characteristic is enhanced with respect to ``full'' shot noise. We provide experimental results showing a Fano factor up to 6.6, and show that it is a dramatic effect caused by electron-electron interaction through Coulomb force, enhanced by the particular shape of the density of states in the well. We also present numerical results from the proposed theory, which are in agreement with the experiment, demonstrating that the model accounts for the relevant physics involved in the phenomenon.Comment: 4 pages, 4 figure

    Atomistic quantum transport modeling of metal-graphene nanoribbon heterojunctions

    Full text link
    We calculate quantum transport for metal-graphene nanoribbon heterojunctions within the atomistic self-consistent Schr\"odinger/Poisson scheme. Attention is paid on both the chemical aspects of the interface bonding as well the one-dimensional electrostatics along the ribbon length. Band-bending and doping effects strongly influence the transport properties, giving rise to conductance asymmetries and a selective suppression of the subband formation. Junction electrostatics and p-type characteristics drive the conduction mechanism in the case of high work function Au, Pd and Pt electrodes, while contact resistance becomes dominant in the case of Al.Comment: 4 pages, 5 figure

    Operation of Quantum Cellular Automaton cells with more than two electrons

    Full text link
    We present evidence that operation of QCA (Quantum Cellular Automaton) cells with four dots is possible with an occupancy of 4N+2 electrons per cell (N being an integer). We show that interaction between cells can be described in terms of a revised formula for cell polarization, which is based only on the difference between diagonal occupancies. We validate our conjectures with full quantum simulations of QCA cells for a number of electrons varying from 2 to 6, using the Configuration-Interaction method.Comment: 4 pages, 4 figures included, submitted to AP
    • …
    corecore